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A hidden variables model for quantum mechanics is proposed and a possible 
test for its validity is described. 

1. I N T R O D U C T I O N  

Starting with the quantum logic approach to quantum mechanics we 
assume the existence of an order-determining set of dispersion-free states 
and obtain a hidden variables theory. This theory has an important  feature 
which is not present in the traditional Hilbert space framework of quan- 
tum mechanics, namely, the expectation functional is not necessarily 
additive. We propose this as a possible test for the existence of hidden 
variables. 

2. H I D D E N  VARIABLES M O D E L  

The quantum logic approach has proved useful for investigating the 
theoretical structure of quantum systems (Birkhoff and von Neumann,  
1936; Jauch, 1968; Mackey, 1963; Piron, 1976; Varadarajan, 1968). 
Although there are variations to this approach one usually obtains at least 
a o-orthocomplete orthomodular  poset. We first recall the relevant defini- 
tions. 

Let L be a set of elements called propos i t ions .  T h e  propositions 
correspond to y e s - n o  experiments for a quantum system. We assume that 
L is a partially ordered set (poset) with first and last elements 0,1, 
respectively. We also postulate the existence of an orthocomplementat ion 
' : L---~L satisfying : a "  = a, a < b implies b' <a ' ,  and a V a ' =  1 for all a , b  
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L. We say that a, b E L  are orthogonal (a_Lb) if a<b' and if aiEL are 
mutually orthogonal we assume that Va;  exists in L. Finally, if a < b  we 
assume that b - - - a V ( b A a ' ) .  The resulting structure is a a-orthocomplete 
or thomodular  poset or logic. 

There are two common examples of logics. Let H be a complex 
Hilbert space and let L(H) be the set of all orthogonal projections on H.  
Under  the usual order and orthocomplementation,  L(H) becomes a logic. 
This is the logic of traditional quantum mechanics. Let s be  a nonempty  
set and let L(s  be a a-algebra of subsets of s Under  set-theoretic 
inclusion and complementat ion,  L(s  becomes a logic corresponding to 
classical mechanics. As we shall see, there is another distinct alternative 
which gives a hidden variables model for quantum mechanics. 

A state on L is a map  m :L---~[0, 1] satisfying m(1)= 1 and m(Vai)= 
Y~m(ai) for any sequence of mutually orthogonal elements aiEL. We 
interpret m(a) as the probabil i ty that the result of a measurement  of the 
proposition a is "yes" when the system is prepared in the state m. A state 
m is dispersion free if its only values are 0 and 1. A dispersion-free state 
provides a deterministic description since every proposition has either a 
"yes" or "no"  answer with certainty when the system is prepared in such a 
state. A set of states S is order determining if m(a)<m(b) for every m E S  
implies that a < b. The traditional Hilbertian logic L(H), d i m H  > 2, has no 
dispersion-free states (Gudder,  1973). However,  a classical logic L(s  has 
an order-determining set of dispersion-free states. Indeed, the set of 
probabili ty measures concentrated at the points of s provides such a set. 

We say that a quantum logic L admits hidden variables if L has an 
order-determining set of dispersion-free states. The important  point is that 
there are logics other than the classical ones which admit  hidden variables 
and these retain the interference effects characteristic of quantum 
mechanics. 

We say that two propositions a, b E L are compatible (a~--~b) (Mackey, 
1963; Varadarajan, 1968) if there exist mutually disjoint propositions al, 
b 1, and c such that a =  alVC and b = blVc. In L(s  any two propositions 
are compatible, while in L(H) two propositions are compatible if and only 
if they commute.  The existence of noncompatible  elements is probably the 
most important  distinguishing feature of quantum mechanics as compared  
to classical mechanics. Noncompatibi l i ty  accounts for the interference of 
measurements that frequently occurs in quantum mechanics as exemplified 
by the Heisenberg uncertainty principle. 

We now present a class of logics which admits hidden variables. Let s 
be a nonempty set. A collection of subsets C of s is called a a-class if (1) 
s E C, (2) A ~ C implies that the complement  A c E C, and (3) U A,. E C for 
any sequence of mutually disjoint A; ~ C. It  is not hard to check that a 
a-class under the usual set-theoretic order and complementat ion is a logic. 
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Moreover, for A,B E C, we have Ae--~B if and only i fA M B E C. The set of 
probabili ty measures concentrated at the points of f] form an order-de- 
termining set of dispersion-free states so C admits hidden variables. 
Clearly, a o-class is a generalization of the o-algebra for a classical logic. 

We now give an example of a o-class which might have physical 
importance. Let X > 0 and let f~---[0, nYt] where n > 1 is an integer. If C is 
the collection of Lebesgue measurable subsets of ~2 whose Lebesgue 
measures /~ are integer multiples of X, then C is a o-class but not a o- 
algebra. This example can be used as a basis for an "elementary length" 
theory in which X is the elementary length (Gudder, 1968, Gudder  and 
Marchand,  1980). Since there are many  incompatible elements in C, this 
example exhibits the interference effects characteristic of quantum 
mechanics. 

We have seen that a o-class admits hidden variables. Conversely, 
suppose a logic L admits hidden variables and let S be an order-determin- 
ing set of dispersion-free states on L. Let h be the map f rom L into the 
collection of subsets of S defined by h(a) = {m E S : re(a) = 1 } and let C be 
the range of h. It can be shown that C is a o-class in S and that h : L---~C is 
an isomorphism (Gudder, 1973). We thus have the following result. 

Theorem. A logic L admits hidden variables if and only if L is 
isomorphic to a o-class C. In this case C can be taken to be a 
a-class of subsets of the set of dispersion-free states on L. 

How does this fit in with the nonexistence proofs for hidden variables? 
Most of these proofs show that if a model admits hidden variables then the 
model must be classical in the sense that all elements of the model are 
mutually compatible. This is not the case in the above theorem. The reason 
for the difference is that in the nonexistence proofs more restrictions are 
placed in the definition of a state than we have made. For  example, in 
Jauch and Piron (1963) it is assumed that a state m satisfies the following 
condition: if m(a)= 1 and m(b)= 1, then m ( a A b ) =  1 [L is assumed to be a 
lattice in Jauch and Piton (1963)]. This condition has been criticized in 
many sources (for example, Bohm and Bub, 1966). 

3. N O N A D D I T I V I T Y  OF EXPECTATIONS 

We now consider a possible test for hidden variables in quantum 
mechanics. Since it is probably impossible to construct a dispersion-free 
state in the laboratory one cannot get a direct test. However, there is 
another important difference between logics that admit hidden variables 
and traditional Hilbertian logics which suggests an indirect test. The 
difference is that in the hidden variables theory expectations need not be 
additive. 
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An observable on a logic L is a o-homomorphism from the Borel 
subsets of the real line B(R) into L. Applying the spectral theorem, an 
observable on a Hilbertian logic L ( H )  can be identified with a self-adjoint 
operator on H. Moreover, by Gleason's theorem (Gleason, 1957), an y  state 
m on L(H)  (d imH >2)  has the form m(P)=tr (WP) ,  P E L ( H ) ,  where W 
is a density operator. The expectation E m of an observable (self-adjoint 
operator) A then becomes Em(A)=tr(WA).  If A and B are self-adjoint 
operators, then 

Em(A + B) = tr[ W(A + B) ] = tr(WA) + t r (WB) = Em(A ) "b Em(B ) 

so the expectation functional is additive. 
Now let C be a o-class of subsets of fL A function f:f~--->R is 

measurable if f -  I( E) E C for every E ~ B(R). If x : B(R)--->C is an observ- 
able, there exists a unique measurable function f such that x ( E ) = f - I ( E )  
for all E E B(R), and conversely if f :  f~-->R is measurable, then f - 1  is an 
observable. Thus, observables on C can be identified with measurable 
functions. Let /~ be a state (probability measure) on C and let f be a 
measurable function on fL Since Cf = ( f -  l(E) : E E B(R)} is a o-algebra, 
(f~, Cf, #) is a probability space and we define the expectation E , ( f ) =  ffdt~ 
in the usual way. The following example, due to Zerbe (1979), shows that 
the expectation functional need not be additive. 

Let Z denote the integers and let a = ((i,j) : i,j ~ Z }. Let R m = {(i,j) : i 
=m},  C , = ( ( i , j ) : j = n } ,  and D t = ( ( i , j ) : i + j = t  }. Let ER, ZC,~]D be the 
o-algebras generated by ( R m : m ~ Z }, ( C n : n E Z }, { D, : t E Z ), respec- 
tively. Since RmN C n ~ ,  R,~N Dt va~, CnA Dtva~  for all m,n,t,  it follows 
that C = N R U Z c U ZD is a o-class. Define the probability measure t~ on Z by 
t~(Ro) = i~(Co)= tt(Dl)= 1, t~(Rm)=/~(Cn) =/~(D t) = 0 for m, n va0, t ~ 1. De- 
fine the measurable functions f,  g by f ( i , j )= i, g(i , j )=j.  Then ( f +  g)(i,j) = i 
+ j  is measurable. Now E , ( f ) =  E~(g )=0  but E~,(f+g)= 1. 

This suggests the following test for hidden variables. Find two non- 
compatible observables A and B such that A, B and A + B  can be 
measured in the laboratory. Prepare a state m and compute Em(A ), Em(B ), 
and Em(A + B). If Em(A + B):/:Em(A)+ Era(B) within the allowable experi- 
mental error, then there is a strong indication of the existence of hidden 
variables. Admittedly, such an experiment might be extremely difficult to 
perform. One possibility that comes to mind is to let A and B be the 
kinetic and potential energies of a system, respectively. Then A + B would 
be the total energy. 

4. T W O . D I M E N S I O N A L  EXAMPLE 

We have already noted that if d i m H  >2,  then L(H)  has no disper- 
sion-free states and hence does not admit hidden variables. We shall now 
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show that if d i m H = 2 ,  then L ( H )  admits hidden variables and the 
expectation functional need not be additive. Since such logics are used to 
describe spin-�89 systems, this gives a physically applicable Hilbertian logic 
that admits hidden variables. 

Let H be the two-dimensional Hilbert space C 2. The nontrivial projec- 
tions in L ( H )  are one dimensional. Given two different one-dimensional 
projections a, b ~ L(H) ,  a dispersion-free state m can be constructed satis- 
fying re (a )=  m ( b ' ) =  1, m ( a ' ) =  re(b)=0.  It  follows that L ( H )  admits hid- 
den variables. 

Let a,b be the following one-dimensional projections: 

1 ,] 
5 

and let A,B be the spin observables 

1 0 ) = a _ a ,  ' 
A =  0 - 1  

The sum 

1 1) 
A + B = ( 1  - 1  

has eigenvalues _+ V~- and hence has the form A + B = V~  d -  V 2  d' ,  
where d,d'  are one-dimensional projections. Since A + B does not com- 
mute with A or B, all the above one-dimensional projections are distinct. 
Define a state m on L ( H )  by m(O)=0, m ( I ) =  1, re(a)= 1, m(a ' )=0,  and 

1 m(c)=  ~ for every c4=0, 1,a,a'. The expectations become 

Em(A ) = m(a)  - m(a')  = 1 

Em(B ) = m(b)  - m(b') =0 

Em(A + B) = V2 re(a)- V2 m(a') =0 

Hence, Em(A + B)v~Em(A ) + Em(B ) and E m is not additive. 
It is granted that dispersion-free states and the state m defined above 

are not physical in the sense that they cannot be prepared in the labora- 
tory. However, it could be argued that such states correspond to hidden 
variables which exist but are presently inaccessible. It should also be noted 
that the sum here is different than the sum of the corresponding measur- 
able functions on a o-class. 
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